首页> 外文OA文献 >Fuzzy Multilevel Graph Embedding for Recognition, Indexing and Retrieval of Graphic Document Images
【2h】

Fuzzy Multilevel Graph Embedding for Recognition, Indexing and Retrieval of Graphic Document Images

机译:模糊多级图嵌入用于图形文档图像的识别,索引和检索

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

This thesis addresses the problem of lack of efficient computational tools for graph based structural pattern recognition approaches and proposes to exploit computational strength of statistical pattern recognition. It has two fold contributions. The first contribution is a new method of explicit graph embedding. The proposed graph embedding method exploits multilevel analysis of graph for extracting graph level information, structural level information and elementary level information from graphs. It embeds this information into a numeric feature vector. The method employs fuzzy overlapping trapezoidal intervals for addressing the noise sensitivity of graph representations and for minimizing the information loss while mapping from continuous graph space to discrete vector space. The method has unsupervised learning abilities and is capable of automatically adapting its parameters to underlying graph dataset. The second contribution is a framework for automatic indexing of graph repositories for graph retrieval and subgraph spotting. This framework exploits explicit graph embedding for representing the cliques of order 2 by numeric feature vectors, together with classification and clustering tools for automatically indexing a graph repository. It does not require a labeled learning set and can be easily deployed to a range of application domains, offering ease of query by example (QBE) and granularity of focused retrieval.
机译:本文解决了基于图形的结构模式识别方法缺乏有效的计算工具的问题,并提出了利用统计模式识别的计算能力。它有两个方面的贡献。第一个贡献是显式图嵌入的新方法。提出的图嵌入方法利用图的多层次分析,从图中提取图层次信息,结构层次信息和基本层次信息。它将这些信息嵌入到数字特征向量中。该方法采用模糊重叠的梯形间隔来解决图形表示的噪声敏感性,并在从连续图形空间映射到离散向量空间时最小化信息损失。该方法具有不受监督的学习能力,并且能够自动将其参数调整为基础图数据集。第二个贡献是为图检索和子图点图自动索引图存储库的框架。该框架利用显式图嵌入来通过数字特征向量表示2级团,并利用分类和聚类工具自动索引图存储库。它不需要标记的学习集,并且可以轻松地部署到一系列应用程序域,从而简化了示例查询(QBE)和集中检索的粒度。

著录项

  • 作者

    Muzzamil Luqman, Muhammad;

  • 作者单位
  • 年度 2014
  • 总页数
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号